A model and method for customization of simulation games

Mads Bruun Larsen
ELEC 2016
Author’s bio

- Mads Bruun Larsen
- Amanuensis, SDU
- Partner, Consulting House Denmark
- Associate, Valeocon
- Consultant since 2004
- M.sc., ph.d.

- mabl@iti.sdu.dk
- mbl@consultinghouse.dk
- +45 21 15 28 16
Agenda

- On the use of simulation and training games
- Motivation for the research
- Model and method for customization of simulation games
- Summary and outlook
Facilitating transformation

- Influencing factors on change
 - Understand the need for change (i.e. the burning platform)
 - Understand the proposed change or solution
 - Understand the consequences and why the solution is better than current practice

- Games and simulation can be a catalyst for latter two
Simulation vs. game?

<table>
<thead>
<tr>
<th></th>
<th>Simulation</th>
<th>Game</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level of detail</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Domain identification</td>
<td>High</td>
<td>Low/medium</td>
</tr>
<tr>
<td># of scenarios</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Involvement</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Sense of ownership</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Tactile</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Purpose</td>
<td>Optimization</td>
<td>Training / motivation</td>
</tr>
<tr>
<td>Method</td>
<td>Virtual</td>
<td>Physical</td>
</tr>
<tr>
<td>Accessibility</td>
<td>Low</td>
<td>High</td>
</tr>
</tbody>
</table>
EVALUATION OF GAMES
Literature review

- **Hands-on gaming enhances learning**
 - Elbadawi, I., McWilliams, D.L. & Tetteh, E.G. 2010, "Enhancing Lean Manufacturing Learning Experience Through Hands-On Simulation", *Simulation & Gaming*, vol. 41, no. 4, pp. 537-552

- **The use of games is better than lectures for learning**
 - Smith, E.T. & Boyer, M.A. 1996, "Designing In-Class Simulations", *PS: Political Science and Politics*, vol. 29, no. 4, pp. 690-694

- **Realistic scenarios that have the same decision scenarios enhances retention of training**
 - Niehaus, James & Riedl, Mark, "Scenario Adaptation: An Approach to Customizing Computer-Based Training Games and Simulations", Gatech
 - Riis, J. 1994, "Games In Production Management", *Production Planning & Control*, vol. 5, no. 2, pp. 229-233
Findings from literature review

- Learning has biggest effect when training or teaching is tactile
 - i.e. use games and exercises
- Effect is bigger when participants can relate to the situation/experience in the game
 - i.e. adapt the game to situation
- No approach yet to make adaptation easier
Dilemma

- Why do we need to customize training games when there is a wealth of available games for either sale or free?

- For an overview of games available see
 - They mention the need for making games as realistic as possible but does not point to customization explicitly
Classification of games

Knowledge application

- Internal
 - Eyeopener
 - Buckingham Lean game
 - Beer game
- External
 - What’s in it for me
 - Specific
 - General
 - 5S
 - SMED
 - LEGO serious play
 - Ahh. That’s how
 - Kata game
 - Let’s start changing

Domain application

Ahh. That’s how

Let’s start changing
TRIZ model for learning from games

Adopted from TRIZ
Hypothesis

- The effect of games is greater if the game set-up and in-game decisions resembles your own situation

- We don’t have evidence yet
To sum up so far …

- Games have a positive effect on learning
- The effect is increased if the environment resembles your own
- The effect is further increased if the decisions in the game resembles your own

- The gab is
 - Most games have a fixed layout (resources, products, etc.)
 - So far no documented way of customizing games

- There is a need for a method and a model for how to customize games for a specific situation
THE PROPOSED SOLUTION
Literature review

- **Using VSM as base-point for building a PC-based simulation model**
 - Xia, W. & Sun, J. 2013, "Simulation guided value stream mapping and lean improvement: A case study of a tubular machining facility", *Journal of Industrial Engineering and Management*, vol. 6, no. 2, pp. 456-576

- **Using simulation to validate future state map**

- **Simulation to validate future state and the use of templates when building model**

- **Explore implementation issues with a simulation model**

- **Describes gaming simulation design with a focus on designing human-interaction games**
 - Kriz, W.C. 2003, "Creating Effective Learning Environments and Learning Organizations through Gaming Simulation Design", *Simulation & Gaming*, vol. 34, no. 4, pp. 495-511
Findings from literature review

- Use VSM as a basepoint for creating the game
- Use the customized game to validate the current state
- Allow realistic changes in the game to explore options and possibilities for improvements i.e. do not use a fixed game-play
It is more complex to customize games than to link general game to my settings!

... or is it?
Flow of developing a simulation game

Idea (process and purpose) → Structure → Collect data → Create model → Simplify / expedite → Conceptualize or codify → Simplify / expedite → Play game and learn

Templates → Templates
Customization effort

Level of detail in game

Simplify

Codify
Structuring data collecting

Tangibles
- Resource
- Inventory
- Transportation

Intangibles
- Layout
- Organization & structure
- Planning

Input
- Demand
- Raw material

Model

Output
- Finished goods
- Scrap
- KPI's

Based on purpose:
- Decide what’s important
- Resource could be plant for SCM
Input

- Demand
 - Product & variant
 - Volume
 - Variation over time
 - Seasonality
 - Lead time requirement per product/variant

- Raw material
 - BOM
 - Supplier lead-time
 - Variation in supplier lead-time
Output

- Finished goods
- Scrap
- KPI’s

Finished goods
- Void

Scrap
- Returns & re-shipments
- Warranty / claims

KPI’s
- Delivery performance: OTIF
- Productivity
- Utilization
- Scrap level
- Financials
- WIP
- Inventory (RM/FG)
Tangibles

- Resource
 - Process time / Production rate
 - Max process batch
 - Production batch size
 - Availability
 - Process failures (types / level)
 - FPY
 - # operators
 - Variant constraints
 - Maintenance
 - Routing
 - Parts/information: input, source, output (pr. output)
 - Quality inspection / approval

- Inventory
 - Max inventory level (constraint)
 - Inventory policy (FIFO, LIFO)
 - Variant constraints
 - Current inventory level

- Transportation
 - Transportation time
 - Max transportation batch
 - Availability
 - Process failures
 - # operators
 - Variant constraints
Intangibles

- **Layout**
 - Spaghetti diagram
 - Layout plan

- **Organization & structure**
 - # employees
 - Competency matrix
 - Organizational structure
 - Empowerment (what can the employee decide themselves)
 - Approval policies

- **Planning**
 - MRP policies (lead-time offset, safety stock/time)
 - Lot size policies
 - CONWIP / Kanban policies
 - Variant creation pattern
Create model

- Demand considerations
 - Products from A, B & C (limit no. of products to 4-10)
 - Dedicated flows,
 - Variants
 - Demand changes
 - Scale demand to codified flow capacity (depends on codified model)

- Flow considerations
 - Focus on the most important resources and activities e.g. leave out maintenance if it is not a concern
 - Simplify reporting and documentation during game (may be the most important in a pharmaceutical environment though)
Codify

- Products
- Processes
- Variation
Codify - Products

- Lego
- Stickle bricks
- Plus-plus
- Paper
- Cards

- Variants
 - Shape / form
 - Color
Codify - Process

- Assemble
- Cut / glue / draw / color
- Calculate / write / fill in
- Fold (origami)
Codify - Variation

- Demand
 - Shuffle orders
 - Change takt
- Process
 - Dice
- Natural variation

![Image of a metronome and cards being shuffled, with a bell curve graph and dice illustrations.]
Summary

- Change is enabled by better understanding of purpose and solution
- So far no formal model for customizing games
- A first model and method is developed

Future needs
- Verification of effect of customized games
- Object-oriented or template like method to further simplify model creation
- Case of using a customized game