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ABSTRACT
Canonical models for bolides in the atmosphere predict that fragile bolides break up at much
higher altitudes than those actually observed. Here, we investigate the hypothesis that such
fragile bolides may survive to low altitudes by a protective outgassing sheath of volatile ices
and organics that shields the meteoroid from direct atmospheric heating.

Key words: Astrobiology – methods: analytical – comets: general – meteorites, meteors,
meteoroids.

1 IN T RO D U C T I O N

Observational data of meteoroids show inconsistencies with the
models used to predict their behaviour. For millimetre to tens of
metre-sized bolides, canonical models are unable to account for
the survival of very fragile bolides to the lower altitudes as has
been observed. The Maribo meteorite that fell in Denmark on 2009
January 17 had an entry velocity of 28.5 km s−1 and has been
linked to the Taurids meteor stream, which itself is thought to be
associated with comet Encke (Haack et al. 2011). When recovered,
the weak 25 g fragment appeared intact but fell apart when touched
(Haack et al. 2012). The fragment has now been classified as a CM2
carbonaceous chrondite. This is evidence for the ability of weak and
friable material to survive atmospheric entry and fall as recoverable
meteorites.

Disintegration of meteoroids descending through the atmosphere
is usually described by a process of continual ablation where the
energy used to heat the bolide is proportional to the cube of its speed
(u3) (Bronshten 1983); or by catastrophic fragmentation when the
ram pressure (∼u2) exceeds the tensile strength of the body (Hills &
Goda 1993). Both these models predict that ∼1 m radii, low-density
meteoroids must reach a minimum altitude of 80–60 km.

Frequently, fireballs are observed at altitudes between 90 and 50
km above the Earth; however, other fireballs, such as the Tunguska
bolide, appear to survive to much lower altitudes, exploding at ∼10
km or less (Chyba, Thomas & Zahnle 1993). Here, we hypothesize
that meteoroids which survive to lower than expected altitudes are
composed of volatile ices and organics held within and surrounding
a denser core. The gases from outgassing, volatile material form
a sheath around the body thus protecting it from direct interaction
with the atmosphere as it decelerates.

Studies of cometary meteoroids suggest that rather than being
composed of a homogeneous material such as stone or chrondite,
they possess both volatile and high-density refractory components.

� E-mail: coulson@aldpartners.com

Investigation of the tracks in aerogel formed by particles collected
from the comet 81P/Wild 2 indicated that the cometary dust con-
sisted of a mixture of cohesive, relatively strong particles as well
as particles with a more volatile matrix containing smaller stronger
grains (Burchell et al. 2008). Similarly, modelling a Leonid mete-
oroid, Coulson (2003) predicted ∼90 per cent of the initial mass of
cometary fragments are a composite of low-density material with
the remainder made up of denser carbonaceous material in order to
correctly describe its trajectory.

Here, we consider a meteoroid consisting of a coherent carbona-
ceous matrix with pores filled with water ice and volatile organics.
In the next section, we model the meteoroid in free-space at a solar
distance of 1 au and calculate the rate of sublimation of volatile
material prior to collision with the Earth’s atmosphere.

2 A C O M P O S I T E B O L I D E IN FR E E SPAC E

We assume that the bolide was a typical cometary fragment, com-
posed of volatile ices and organics held within as well as surround-
ing a denser core of either a stone or chronditic-type material. For
simplicity, we suppose that the initial bolide was spherical with a
radius a ∼ 1 m with an average density of 0.9 g cm−3.

In free-space within the Solar System, such a cometary body is
heated by the Sun. At a solar distance R and an angle θ between
the Sun and a normal to the surface of the body, the energy balance
equation is

F�e−τT (1 − A (υ)) cos θ

R2
= εσT 4

B + Z (θ ) L (TB)

N0
+ K

∂TB

∂r

∣∣∣∣
r=a

,

(1)

where F� is the energy flux from the Sun, A(υ) is the effective
albedo at a given frequency υ and τT is the total optical depth be-
tween the Sun and the body. The energy from the Sun is dissipated
through thermal radiation, sublimation of volatile particles from the
body and conduction of heat throughout the body – the successive
terms on the right-hand side of equation (1). Here, TB is the equi-
librium temperature of the body, Z (θ ) is the sublimation rate of
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the volatile material with a latent heat of sublimation L (usually a
function of temperature) and thermal conductivity K . N0, ε and σ

are Avogadro’s constant, the emissivity and the Stefan–Boltzmann
constant, respectively.

At a distance of 1 au, a 1 m radius body has a temperature approx-
imately equal the blackbody temperature of ∼260–270 K (Coulson
& Wickramasinghe 2003) depending on the effective albedo. Sub-
limation cooling and the subsequent increase in optical depth from
dust production through the release of volatiles lowers typical tem-
peratures of cometary bodies to ∼200 K at 1 au (Keller 1990). At
such values of temperatures, energy losses from the body occur
principally by sublimation (radiation losses are lower by a factor
∼50).

The saturation pressure of the sublimating grains is given by the
Clausius–Clapeyron equation

Psat = Pref exp

[
H

Rgas

(
1

Tref
− 1

T

)]
, (2)

where Rgas is the universal gas constant and H is the enthalpy
change of sublimation increased by the enthalpy of vaporization
at temperatures above the melting point of the volatile material
(Coulson & Wickramasinghe 2003).

Assuming that the volatile material can be treated as an ideal gas,
the number density n of the sublimating gas particles is related to
the saturation pressure by

Psat ≈ nkBTB, (3)

where kB is Boltzmann’s constant.
In the case of thermodynamic equilibrium, the speed v of the

sublimating molecules can be calculated using

v =
√

kBTB

2πmuM
, (4)

where mu is the atomic mass of the sublimating molecules and M

the molecular weight.
From equations (2)–(4), the rate of sublimation can be found

using

Z (θ ) = n (θ )

√
kBTB

2πmuM
. (5)

For water ice at a temperature of 200 K, the sublimation rate is ∼ 5 ×
1022m−2 s−1 and the saturation pressure is ∼1 torr. For a comet
composed of volatile organics rather than ice, both the sublimation
rate and the saturation pressure are reduced by a factor of ∼0.5, if
one takes account of the somewhat higher binding energies of the
former.

The number density of the sublimating molecules falls off as the
inverse square of the distance from the surface of the body. For
simplicity, we assume that the sublimating molecules form a dense
region around the body that is at least one mean free-path in length.
The mean free-path of the sublimating gas,

λg = u

ZσT
, (6)

where σT∼ 10−19 m2 is the total scattering cross-section. For water
ice at 200 K, λg ≈ 2 cm.

The gases from the sublimating material form a sheath around the
body which protects it from direct interaction with the atmosphere
as it descends at hypersonic speeds.

3 MO D E L L I N G T H E BO L I D E IN TH E
E A RT H ’ S AT M O S P H E R E

On its fall through the low-density atmosphere, the bolide is heated
by direct impact from incoming gas molecules from the Earth’s
atmosphere. These impacting gas molecules deposit energy in the
surface as well as sputtering ice molecules (Coulson & Wickramas-
inghe 2003). If the bolide is travelling through the atmosphere with
a speed u, the sublimation rate is increased by ∼ 0.5ρatmu3L−1,

where ρatm is the density of the atmosphere (Coulson & Wickra-
masinghe 2003).

For a body entering the Earth’s atmosphere with the minimum
initial speed of 12 km s−1, the increased sublimation from col-
lisions with incoming air molecules at an altitude of 100 km is
1.5 × 1023 m−2 s−1, approximately three times greater than the sub-
limation rate from thermally sublimating grains. For a body enter-
ing the atmosphere with the maximum initial speed of 72 km s−1,
the sublimation rate is increased by two orders of magnitude to
3.1 × 1025 m−2 s−1.

As the bolide descends, the increasing densities of the atmosphere
and the outflowing gas lead to a transition from free molecular flow
to hydrodynamic flow. This transition occurs when the total mean
free-path of atmospheric and sublimated molecules (λ ≡ λatm + λg)
is less than the bolide radius (λ < a). In the absence of sublimation,
for a bolide with a radius of 1 m, the hydrodynamic region corre-
sponds to an altitude of ∼80 km, where λatm ∼ 1 cm (Allen 2000).
In the case of a sublimating bolide, the ‘outgas’ density increases
the altitude at which the transition to hydrodynamic flow occurs.
For a water-ice-dominated bolide, this occurs at an altitude ∼100
km.

Within the hydrodynamic flow region, the aerodynamic drag is
proportional to u2 (Coulson 2003). We calculate that the total mass
lost through sublimation is < 1 per cent of the original mass of the
bolide. Hence, the equation of motion for the deceleration of the
body can be greatly simplified by assuming that the mass remains
essentially constant during deceleration. Solving the equations of
motion for a bolide entering the Earth’s atmosphere under the influ-
ence of atmospheric drag, the velocity profile for the body can be
written as a function of its altitude h

u (h) = u0 exp

(
−3CD

a

ρ0

ρm

He−h/H

)
, (7)

where ρ0e−h/H is the variation in atmospheric density at a scale-
height H (Allen 2000) and CD is the atmospheric drag coefficient.
We assume here that the value of CD is unity for consistency with
the majority of existing meteoroid entry models; however, studies
by Kremeyer et al. (2006) show that an aerosheath around a body
travelling at hypersonic speeds significantly reduces the drag coeffi-
cient, by up to ∼90 per cent compared with a sphere. In the subsonic
regime, air-layer drag reduction gives ∼80 per cent reduction in the
coefficient.

In deriving equation (7), the effect of gravity upon the bolide has
been ignored, similar to the approach used by Bronshten (1983)
and Ceplecha et al. (1993). This assumption is valid so long as the
magnitude of the drag force is greater than the force of gravity. Such
a condition is satisfied provided that

u(h) >

(
ρmga

3ρ0CDe−h/H

)1/2

.

For a bolide of radius 1 m and density 0.9 g cm−3 at an altitude
of 10 km (i.e. after the onset of deceleration), the effect of gravity
does not become significant unless the bolide’s velocity is less
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Figure 1. Velocity profiles for 1 m radii bolides entering the Earth’s atmo-
sphere at angle of π/4 to the downward vertical and an initial speed of 12
km s−1. The solid curve is for a bolide composed of a comet-like ice and
organics with a density of 0.6 g cm−3. The dashed curve is for a higher
density bolide of 0.9 g cm−3.

than the minimum infall speed, 12 km s−1. Under these conditions,
the deceleration of the body may be adequately described using
equation (7). In the appendix, we present an analytical solution for
the velocity profile of a meteor when gravity is significant.

Fig. 1 shows velocity profiles for bolides of radius 1 m entering
the Earth’s atmosphere at an angle of π/4 to the downward ver-
tical and an initial speed of 12 km s−1. The region of maximum
deceleration in Fig. 1 occurs at an altitude of around 10 km, where
mechanical stresses on the body are greatest. If mechanical stresses
from deceleration are greater than the macroscopic strength of the
body, it will fracture.

After the transition to hydrodynamic flow has occurred, a bow
shock of atmospheric and sublimated gas particles surrounds the
forward hemisphere of the bolide at a distance of ∼0.5 m. There
are three distinct regions to consider: (1) a sheath of sublimating
particles, (2) a region of shocked atmospheric and sublimated gas
particles and (3) a larger region consisting of unshocked atmo-
spheric gases.

The sheath of sublimating gases behaves like the atmosphere of
a comet or non-magnetic planet in the solar wind. The bow shock
stands-off ahead of the bolide, diverting the atmosphere around it.
The two protective properties compared with a ‘no sheath’ situation
are as follows.

• The bow shock is not attached, so fracture due to pressure
gradients are much less probable.

• The hot shocked gases make no direct contact and their ra-
diative heating of the bolide is reduced by the optical depth of the
sublimated particles.

The saturation pressure of the sublimating molecules is greater
than the maximum ram pressure exerted by the bow shock if the
bolide temperature exceeds 300–400 K. The sheath thickness ex-
tends at least one mean free-path (∼10−3 m at a temperature 300
K) in front of the body, and from equation (6) is determined by the
speed of flow from the sheath into the tail (∼100 m s−1).

Protected from direct impact by incoming air molecules, subli-
mation is limited by the radiative heating from the shocked gases.
The temperature of the shocked gas can be calculated from the
pressure and density of the shocked region. Assuming that the at-
mospheric gases are monatomic, the pressure of the shocked gas is
Ps ≈ 3/4ρatmu2, and the velocity of the shocked gas is us ≈ 1/4u.

The maximum temperature of the shocked gas near the stagnation
point is of the order of

∼ 3

16

μ

kB
u2, (8)

where μ is the mass of the gas molecules.
Using equations (7) and (8), the temperature of the shocked gas

region is around 50 000 K for a 1 m radius bolide entering the
Earth’s atmosphere with an initial speed of 12 km s−1, and a density
of 0.6 g cm−3. The bulk of the kinetic energy from the deceleration
of the bolide in the atmosphere is dissipated through the heating of
the shocked gas region rather than in heating the bolide. This cal-
culation ignores the effects of ionization of gas molecules which
would absorb a fraction of the energy, and so the values of 50 000 K
should be considered an upper bound for the temperature of the
shocked region. Shocked gas temperatures of ∼ 104 K imply that
radiant heating through the aerosheath region is the primary means
of heat transfer to the body.

4 T E M P E R AT U R E D I S T R I BU T I O N W I T H I N
T H E M E T E O RO I D

Radiative heating of the bolide from the shocked gas can be de-
scribed using a modified form of equation (1)

e−τeff,gσT 4
S = εσT 4

B + Z L (TB)

N0
+ ak

3K

∂TB

∂t
. (9)

The last term on the right-hand side of equation (9), the ther-
mal conduction term, is described by the heat conduction equation,
which for spherical geometry takes the form

∂T

∂t
= 1

r2

∂

dr

(
k (r)

∂T

∂r

)
, 0 ≤ r ≤ a (10)

for the internal temperature of a meteoroid of radius a, where k (r) =√
K
Cρ

, where K is the thermal conductivity and C the specific heat

capacity. If k is assumed to be independent of r, then equation (10)
reduces to a linear, parabolic partial differential equation. Solving
subject to the boundary conditions

∂tT (a, 0) = T0,

and

∂tT (a, t) = TS (t) = 1
2 ρmu3 (t) − L

kN0
n

√
kBT

2πmM

gives

T (t, r) = T0 +
∞∑

n=1

(−1)n

n

2a

πr
TS (a, t) e

−
(

nπk
a

)2
t
sin

nπr

a

+
t∫

0

∞∑
n=1

(−1)n−1 2nπk2

ar
TS (t = 0) e

−
(

nπk
a

)2
t ′

× sin
nπr

a
TS

(
t ′) dt ′.

Hence, we can associate a time constant τ with thermal conduc-
tion within the meteoroid such that

τ =
( a

kπ

)2
. (11)

Inserting suitable values for the density, thermal conductivity
and specific heat capacity for a 1 m radius meteoroid composed of
ice gives τ ≈ 5 × 104 s. Typical meteoroid flight times through the
atmosphere ∼100 s; hence, thermal conductivity is not significant
in 1 m radius ice meteoroids.
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The value of the time constant is not very sensitive to the composi-
tion of the meteoroid: τgraphite ≈ 1.2 × 104 s and τiron ≈ 4.1 × 103 s
are still much greater than likely meteoroid flight times for 1 m
bolides.

Bodies with radii less than 5 × 10−4m are too small to sustain
thermal gradients (Coulson & Wickramasinghe 2003). This gives
a lower bound for meteoroid size where thermal conductivity is
significant. From equation (11), we note that heat conduction is
likely to be important for ice meteoroids with radii 5 × 10−4 m <

a < 1 × 10−2 m, and for iron and graphite bolides with radii in the
range 5 × 10−4 m < a < 1 × 10−1 m.

As thermal conductivity is insignificant for 1 m sized meteoroids,
radiation emission and ablation are the mechanisms by which heat
from the shocked gas is partitioned at the meteoroid surface. While
there is sufficient volatile material able to transfer heat in contact
with the surface of the bolide, ablation removes the energy from
the shocked gas without greatly increasing the temperature of the
meteoroid. At temperatures <1000 K, sublimation is the dominant
mechanism for heat loss. The rise in temperature of the bolide from
increased sublimation is discussed in the next section.

5 R A D I AT I V E H E AT I N G O F T H E M E T E O RO I D

Compression of the air molecules forming the bow shock in front
of the meteoroid generates temperatures of ∼ 104 K. Heat from the
bow shock radiates isotropically, so that a considerable fraction of
the thermal energy goes into heating the atmosphere rather than the
meteoroid.

For a meteoroid of radius a, the region of shocked air is sep-
arated by a distance ≈ 3

2 a around the centre of the meteoroid. If
the pressure of ablating material forming the aerosheath is greater
than the pressure exerted by the shocked gas, the aerosheath sepa-
rates the bow shock from the surface of the meteoroid. The thickness
of the aerosheath is ∼ λ, the mean free-path of the ablating material.
From equation (6), λ∼ 1 mm for bolide temperatures 200–400 K,
so that the presence of an aerosheath does not significantly extend
the stand-off distance of the bow shock. Assuming that the shocked
region can be considered as an hemispherical shell of thickness
1
2 a, which emits radiation as a black-body at a constant tempera-
ture, for isotropic emission the fraction of radiation emitted into the
meteoroid is approximately 4/9.

If there is sufficient volatile material in the bolide, the majority
of the energy from radiative heating by the shocked gas goes into
sublimating more volatile gases from the bolide. The rise in the
temperature of the bolide is strongly dependent on the composition
of the molecules of the sublimated material forming the sheath.

Assuming that the bolide is composed purely of water ice, ra-
diation from the bow shock will be scattered by the sublimating
water molecules within the sheath. For typical bow-shock temper-
atures ∼ 10 000 K, the wavelength of the incident UV radiation is
∼ 1 × 10−7 m, much greater than typical molecular radii ∼10−10m.
Under these conditions, radiation interacts with the ice molecules
through Rayleigh scattering (van de Hulst 1981). The intensity of
the radiation incident on the surface of the bolide is then reduced
by a factor of

8πNα2

λ4R2

(
1 + cos2 θ

)
, (12)

where R is the distance between the shocked air and the surface of
the bolide and N the number density of the sublimating molecules,
approximately equal to the sublimation rate, Z ∼ 1 × 1023 for an
ice bolide at 273 K. α is the polarizability of the molecules which

Figure 2. The variation of the Rayleigh scattering efficiencies (on a log
scale) with wavelength across the UV and IR wavelengths. Calculated from
equation (12) for a 1 m radius block of sublimating ice, with a sublimated
particle number density of N = 1 × 1023, using the optical constants for ice
given by Warren & Brandt (2008).

can be calculated from the complex refractive index m (λ) = n − ik
using the equation

α =
(

m2 − 1

m2 + 2

)
a3. (13)

Warren and Brandt (2008) have determined the real and imagi-
nary optical constants for ice across the UV and IR wavelengths.
Using these values in equation (13), the Rayleigh scattering effi-
ciencies for a pure ice bolide are calculated and shown in Fig. 2.
The λ−4 dependence of the scattering efficiency implies that the
effect of scattering is several orders of magnitude greater at the
UV wavelengths than the IR. This implies that the sublimating
molecules are more efficient at scattering incident UV radiation
from the shocked air than IR radiation emitted by the bolide. A
resulting inverse greenhouse effect may thus lead to lower than
expected bolide temperatures.

Absorption of incident radiation by molecules is proportional to
λ−1 (van de Hulst 1981), so that scattering is the dominant mecha-
nism by which the intensity of incident radiation is reduced at UV
wavelengths.

The energy balance equation for an ice bolide is obtained by
modifying equation (9), so that the incident radiation spectrum is
given by the Planck function B (λ, T ∼ 10 000 K). Integrating (12)
over all incident angles θ to obtain the Rayleigh scattering cross-
section σs gives∫
λ

σs (λ) B (λ, T = 10 000 K) dλ = εσT 4
B + Z L (TB)

N0
(14)

and from the results of the previous section the heat conduction
term on the right-hand side of equation (9) can be omitted.

In the absence of any sublimating material surrounding the bolide,
the incident radiation flux in equation (14) can be approximated as
a blackbody with the temperature equal to that of the bow-shock
temperature (∼ 10 000 K)

εσT 4
S = εσT 4

B + Z L (TB)

N0
. (15)

In this case, the thermal energy from the bow shock is balanced by
a maximum sublimation rate of ∼ 1 × 1027m−2 s−1, corresponding
to a maximum bolide temperature of ∼500 K. The energy loss due to
radiation from the bolide is significantly less than the sublimation
losses and so the εσT 4

B term in equations (14) and (15) can be
ignored.

Numerical integration of the incident radiation flux in equa-
tion (14) using the Rayleigh scattering efficiencies calculated in
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Fig. 2 gives a sublimation rate ∼ 1 × 1023m−2 s−1, corresponding
to a maximum bolide temperature of 260 K. Hence, a sublimating
1 m radius pure ice bolide would lose <2 per cent of its original
mass during atmospheric descent.

As the more volatile fractions of the bolide are used up, the
bolide temperature rises, the less volatile carbonaceous material also
evaporates and the capacity to generate a protective sheath is lost.
At this point, the bow shock attaches and the bolide disintegrates
explosively.

Sublimation is very effective in cooling the infalling bolide; it also
shields the bolide from strong pressure gradients associated with the
attached bow (or limb) shock of a sheath-less bolide. Depletion of
the surface volatiles reduces the optical depth from the aerosheath,
consequently reducing the shielding from radiative heating. Raised
surface temperature and attachment of the bow shock to the body
may all play a part in deciding the final break up. The bow shock
travels through the bolide with a velocity approximately equal to
that of the bolide (∼10 km s−1). The body is compressed by the
shockwave and then ruptured by the reflected shock from the rear
face of the bolide so that fragmentation occurs within ∼ 10− 4 s.

6 C O N C L U S I O N

The classical modelling of stony and iron meteorite falls cannot ex-
plain the low-altitude break-up of a fragile meteorite. We propose
an alternative sublimation model, which applies to bolides with
substantial fractions of water ice and organics within a low-density
matrix of porous siliceous material. The presence of a protective
layer of sublimating material enables such fragile bodies to with-
stand high thermal heating rates until either mechanical stress or the
loss of volatile material results in catastrophic failure of the body.

If the optical thickness of the ablating material drops, heating of
the body may produce gases from vaporization of volatile compo-
nents inside the body. Mechanical stress or explosion from igni-
tion of gases may account for the disintegration process in bolides
formed of volatile components held within an impermeable porous
shell.

Our model assumes that the sublimation pressure increases as the
bolide descends through the Earth’s atmosphere such that the subli-
mation pressure ≈ ram pressure and that the mass lost by sublima-
tion 
 than the original mass of the body. Both these assumptions
are validated by our calculations.

The detailed transition from free molecular flow to hydrodynamic
flow is a sensitive function of both the mean free-path of the sub-
limated molecules and the incoming atmospheric gas molecules
(Coulson 2006). The presence of an aerosheath is a further factor
to be considered in determining the altitude at which meteoroids
transition between flow regimes.
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APPENDI X

Consider a spherical, non-ablating meteor of radius a, falling
through the atmosphere under the influence of gravity and atmo-
spheric drag. If the speed of the meteor v is written as a function of
its path length through the atmosphere x, the equation of motion of
the meteor is

v
dv

dx
= a2 − a1e−a0xv2 (A1)

with the initial conditions v = v0, x = x0, i.e. the meteor has an
initial speed of v = v0 in free space prior to atmospheric decent.
Here,

a0 = cos θ

H

a1 = 3
CD

a

ρ0

ρm

a2 = g cos θ,

θ is the angle the meteor’s path makes with the downward vertical
and g is the acceleration due to gravity.

Writing f (x) = a1e−a0x, the non-linear equation (A1) becomes

v
dv

dx
+ f (x)v2 = a2, (A2)

which can be solved by means of an integrating factor 1
2 e2

∫
f (s)ds

to give

v (x) =
(

v2
0e−2

a1
a0

(e−a0x−e−a0x0 ) + 2
a2

a0
e−2

a1
a0

e−a0x

× [Ei (X) − Ei (X0)]

)1/2

, (A3)

where Ei is the exponential-integral Ei (x) = −
∞∫

−x

e−t

t
dtand X,

X0 are the dimensionless quantities X = 6
cos θ

H
a

ρ0
ρm

e− cos θ
H x , X0 =

6
cos θ

H
a

ρ0
ρm

e− cos θ
H x0 .

Calculating values for the speed of a 1 m radius Polonnaruwa-
type bolide with an initial speed of 12 km s−1 using equation (A3)
is consistent with ignoring the effects of gravity to within three
decimal places for altitudes above 15 km.
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